Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1121886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063222

RESUMO

Introduction: Arsenic (As) contamination in soil, sediments, and water poses a significant threat to the growth of bamboo plants. However, nanoparticles with high metal absorbance capacity can play a key role in the reduction of heavy metals toxicity in plants as well as maintaining their growth under toxicity. Methods: Hence, an in vitro experiment was conducted to determine the influence of three types of nanoparticles: 150 µM silicon nanoparticles (SiO2 NPs), 150 µM titanium nanoparticles (TiO2 NPs), and 150 µM zinc oxide nanoparticles (ZnO NPs) on As (150 µM and 250 µM) tolerance enhancement of a one-year-old bamboo species (Pleioblastus pygmaeus). Results and discussion: The results showed that while As at 150 µM and 250 µM significantly disrupted the plant growth by excessive generation of reactive oxygen species (ROS) components, and inducing cell membrane peroxidation, the addition of NPs increased both enzymatic and non-enzymatic antioxidant activities, upregulated glyoxalase defense system, and improved gas exchange parameters and photosynthetic pigments content, leading to the enhanced plant shoot and root dry weight. These were achieved by lowering levels of ROS, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) and the superoxide radical ( O 2 • - ), as well as decreasing As accumulation in the plant organs. Thus, it might be concluded that ZnO NPs, SiO2NPs, and TiO2NPS alone or in combination can significantly increase the bamboo plant tolerance to As toxicity via key mechanisms, including induction of various antioxidants and glyoxalase defense systems, scavenging of ROS and methylglyoxal (MG), increasing phytochelatins production, reduction of As accumulation and translocation, and improving photosynthetic pigments under As toxicity. Additionally, the results showed that the combined application of 150 µM ZnO NPs, SiO2 NPs, and TiO2 NPs had the greatest effect on enhancing the plant tolerance to As at 150 µM and 250 µM.

2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768266

RESUMO

Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant's tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves.


Assuntos
Antioxidantes , Manganês , Nitroprussiato/farmacologia , Manganês/toxicidade , Cromo/toxicidade , Água , Glutationa , Doadores de Óxido Nítrico
3.
Antioxidants (Basel) ; 11(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36552536

RESUMO

An in vitro experiment was conducted to determine the influence of phytohormones on the enhancement of bamboo resistance to heavy metal exposure (Cd and Cu). To this end, one-year-old bamboo plants (Pleioblastus pygmaeus (Miq.) Nakai.) contaminated by 100 µM Cd and 100 µM Cu both individually and in combination were treated with 10 µM, 6-benzylaminopurine and 10 µM abscisic acid. The results revealed that while 100 µM Cd and 100 µM Cu accelerated plant cell death and decreased plant growth and development, 10 µM 6-benzylaminopurine and 10 µM abscisic acid, both individually and in combination, increased plant growth by boosting antioxidant activities, non-antioxidants indices, tyrosine ammonia-lyase activity (TAL), as well as phenylalanine ammonia-lyase activity (PAL). Moreover, this combination enhanced protein thiol, total thiol, non-protein, glycine betaine (GB), the content of proline (Pro), glutathione (GSH), photosynthetic pigments (Chlorophyll and Carotenoids), fluorescence parameters, dry weight in shoot and root, as well as length of the shoot. It was then concluded that 6-benzyl amino purine and abscisic acid, both individually and in combination, enhanced plant tolerance under Cd and Cu through several key mechanisms, including increased antioxidant activity, improved photosynthesis properties, and decreased metals accumulation and metal translocation from root to shoot.

4.
Antioxidants (Basel) ; 11(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35326101

RESUMO

The integrated application of nanoparticles and phytohormones was explored in this study as a potentially eco-friendly remediation strategy to mitigate heavy metal toxicity in a bamboo species (Pleioblastus pygmaeus) by utilizing titanium oxide nanoparticles (TiO2-NPs) and 24-epibrassinolide (EBL). Hence, an in vitro experiment was performed to evaluate the role of 100 µM TiO2 NPs and 10-8 M 24-epibrassinolide individually and in combination under 100 µM Cu and Cd in a completely randomized design using four replicates. Whereas 100 µM of Cu and Cd reduced antioxidant activity, photosynthetic capacity, plant tolerance, and ultimately plant growth, the co-application of 100 µM TiO2 NPs and 10-8 M EBL+ heavy metals (Cu and Cd) resulted in a significant increase in plant antioxidant activity (85%), nonenzymatic antioxidant activities (47%), photosynthetic pigments (43%), fluorescence parameters (68%), plant growth (39%), and plant tolerance (41%) and a significant reduction in the contents of malondialdehyde (45%), hydrogen peroxide (36%), superoxide radical (62%), and soluble protein (28%), as well as the percentage of electrolyte leakage (49%), relative to the control. Moreover, heavy metal accumulation and translocation were reduced by TiO2 NPs and EBL individually and in combination, which could improve bamboo plant tolerance.

5.
Front Plant Sci ; 13: 841501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295636

RESUMO

The utilization of nanoparticles to potentially reduce toxicity from metals/metalloids in plants has increased in recent years, which can help them to achieve tolerance under the stressful conditions. An in vitro experiment was conducted to investigate five different levels of zinc oxide nanoparticles (ZnO-NPs; 0, 50, 100, 150, and 200 µM) both alone and in combination with 150 µM arsenic (As) and 150 µM mercury (Hg) in one-year-old Pleioblastus pygmaeus (Miq.) Nakai plants through four replications. The results demonstrated that As and Hg alone had damaging effects on the plant growth and development. However, the addition of various concentrations of ZnO-NPs led to increased antioxidant activity, proline (79%) content, glycine betaine (71%) content, tyrosine ammonia-lyase (43%) activity, phenylalanine ammonia-lyase (69%) activity, chlorophyll indices, and eventually plant biomass, while the lipoxygenase activity, electrolyte leakage, soluble protein, hydrogen peroxide content, and thiobarbituric acid reactive substances were reduced. We concluded that ZnO-NPs detoxified As and Hg toxicity in the plants through increasing antioxidant activity, reducing As and Hg accumulation, As and Hg translocation from roots to shoots, and adjusting stomatal closure. This detoxification was further confirmed by the reduction of the translocation factor of As and Hg and the enhancement of the tolerance index in combination with ZnO-NPs. However, there is a need for further investigation with different metals/metalloids.

6.
Antioxidants (Basel) ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34943084

RESUMO

Recently, nitric oxide (NO) has been reported to increase plant resistance to heavy metal stress. In this regard, an in vitro tissue culture experiment was conducted to evaluate the role of the NO donor sodium nitroprusside (SNP) in the alleviation of heavy metal toxicity in a bamboo species (Arundinaria pygmaea) under lead (Pb) and cadmium (Cd) toxicity. The treatment included 200 µmol of heavy metals (Pb and Cd) alone and in combination with 200 µM SNP: NO donor, 0.1% Hb, bovine hemoglobin (NO scavenger), and 50 µM L-NAME, N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor) in four replications in comparison to controls. The results demonstrated that the addition of L-NAME and Hb as an NO synthase inhibitor and NO scavenger significantly increased oxidative stress and injured the cell membrane of the bamboo species. The addition of sodium nitroprusside (SNP) for NO synthesis increased antioxidant activity, protein content, photosynthetic properties, plant biomass, and plant growth under heavy metal (Pb and Cd) toxicity. It was concluded that NO can increase plant tolerance for metal toxicity with some key mechanisms, such as increasing antioxidant activities, limiting metal translocation from roots to shoots, and diminishing metal accumulation in the roots, shoots, and stems of bamboo species under heavy metal toxicity (Pb and Cd).

7.
Plant Signal Behav ; 15(7): 1777372, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32508222

RESUMO

Salicylic acid (SA) and gibberellins (GAs), as two important plant growth hormones, play a key role in increasing plant tolerance to abiotic stress. They contribute to the increased plant antioxidant activities in ROS scavenging, which is related to the enzymes involved in H2O2-detoxifying. In photosynthetic cycles, the endogenous form of these phytohormones enhances photosynthetic properties such as stomatal conductance, net photosynthesis (PN), photosynthetic oxygen evolution, and efficiency of carboxylation. Furthermore, in cell cycle, they are able to influence division and expansion of cell growth in plants under stress, leading to increased growth of radicle cells in a meristem, and ultimately contributing to the increased germination rate and lengths of shoot and root in the stress-affected plants. In the case of crosstalk between SA and GA, exogenous GA3 can upregulate biosynthesis of SA and consequently result in rising levels of SA, enhancing plant defense response to environmental abiotic stresses. The aim of this paper was to investigate the mechanisms related to GA and SA phytohormones in amelioration of abiotic stress, in particular, heavy metal stress.


Assuntos
Giberelinas/farmacologia , Ácido Salicílico/farmacologia , Giberelinas/metabolismo , Metais Pesados/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico
8.
ScientificWorldJournal ; 2018: 1219364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30111987

RESUMO

Investigating factors involved in the alleviation of the toxic effects of heavy metals (HMs) on plants is regarded as one of the important research concerns in the environmental field. The southern regions of China are severely impacted by human-induced heavy metal (HM) contamination, which poses an impediment to growth and productivity of bamboo (Indocalamus latifolius) plants. This necessitates the investigation of the effects of HMs on growth and physiological properties of bamboo. Therefore, the aim of the study was to evaluate some gas exchange and growth parameters in two-year-old bamboo species under HMs stress. A greenhouse-based experiment was conducted at Nanjing Forestry University, where the bamboo plant was treated with three HMs (Cu, Pb, and Zn) at four different concentrations (0, 500, 1000, and 2000 mg kg-1). The results illustrated that excessive HMs (1000 and 2000 mg kg-1) triggered a decline in a number of photosynthetic-related indices including the rate of photosynthesis (µmol CO2 m-2 s-1), intercellular CO2 concentration (µmol CO2 mol-1), conductance to H2O (mol H2O m-2 s-1), and net assimilation as well as transpiration. Morphological indices were also depressed as a result of the adverse influence of HMs, leading to decreased shoot length (10 to 73%) and reduced number of emerged plants (6 to 57%). Also, the results indicated that Pb had the greatest harmful impact on the growth indices.


Assuntos
Metais Pesados/toxicidade , Fotossíntese/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Cobre/toxicidade , Monitoramento Ambiental , Chumbo/toxicidade , Poaceae/fisiologia , Zinco/toxicidade
9.
ScientificWorldJournal ; 2015: 756120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25688377

RESUMO

Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.


Assuntos
Poluentes Ambientais/análise , Inativação Metabólica/fisiologia , Metais Pesados/análise , Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Quelantes/metabolismo , Metalotioneína/metabolismo , Metais Pesados/farmacocinética , Metais Pesados/toxicidade , Micorrizas/metabolismo , Plantas/metabolismo , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...